Interleaved Evolution with NLO- and Helicity-Amplitudes

Peter Skands
(CERN TH)
July 4th 2012:

Now entering era of precision studies

+ huge amount of other physics studies:

of journal papers so far: 225 ATLAS, 195 CMS, 83 LHCb, 62 ALICE

Some of these are already, or will ultimately be, theory limited
Why?

Precision = Clarity, in our vision of the Terascale

Searching towards lower cross sections, the game gets harder
+ Intense scrutiny (after discovery): precision = information

Theory task: invest in precision
(+ lots of interesting structures in QFT, can compare to data, ...)

This talk: a new formalism for highly accurate collider-physics calculations + some future perspectives

+ huge amount of other physics studies:

of journal papers so far:
225 ATLAS, 195 CMS, 83 LHCb, 62 ALICE

Some of these are already, or will ultimately be, theory limited
How?

Fixed Order Perturbation Theory:
- Problem: limited orders

Parton Showers:
- Problem: limited precision

“Matching”: Best of both Worlds?
- Problem: stitched together, slow, limited orders

Interleaved pQCD
- Infinite orders, high precision, fast
The Problem of Bremsstrahlung

Jet Event at 2.36 TeV Collision Energy
2009-12-14, 04:30 CET, Run 142308, Event 482137
The Problem of Bremsstrahlung

Accelerated Charges

Jet Event at 2.36 TeV Collision Energy
2009-12-14, 04:30 CET, Run 142308, Event 482137
The Problem of Bremsstrahlung

Accelerated Charges

Associated field (fluctuations) continues
The Problem of Bremsstrahlung

Accelerated Charges

Associated field (fluctuations) continues
The Problem of Bremsstrahlung

The harder they get kicked, the harder the fluctuations that continue to become strahlung.
Most bremsstrahlung is driven by divergent propagators → simple structure

Amplitudes factorize in singular limits (→ universal “conformal” or “fractal” structure)

Most bremsstrahlung is driven by divergent propagators → simple structure

Amplitudes factorize in singular limits (→ universal “conformal” or “fractal” structure)

Partons ab → “collinear”:

\[P(z) = \text{Altarelli-Parisi splitting kernels, with } z = \text{energy fraction} = \frac{E_a}{E_a+E_b} \]

\[|M_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a \parallel b} g_s^2C \frac{P(z)}{2(p_a \cdot p_b)} |M_F(\ldots, a+b, \ldots)|^2 \]

Jets = Fractals

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

Partons ab → "collinear":

$$|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{\text{collinear}} g_s^2 C \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a + b, \ldots)|^2$$

Gluon j → "soft":

$$|\mathcal{M}_{F+1}(\ldots, i, j, k, \ldots)|^2 \xrightarrow{\text{soft}} g_s^2 C \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots, i, k, \ldots)|^2$$

+ scaling violation: $g_s^2 \rightarrow 4\pi\alpha_s(Q^2)$

Jets = Fractals

- **Most bremsstrahlung** is driven by divergent propagators \rightarrow simple structure
- **Amplitudes factorize in singular limits** (\rightarrow universal “conformal” or “fractal” structure)

Partons $ab \rightarrow$ **“collinear”:**

$$|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \propto \frac{a!b!}{2(p_a \cdot p_b)} \mathcal{P}(z) |\mathcal{M}_F(\ldots, a + b, \ldots)|^2$$

Gluon $j \rightarrow$ **“soft”:**

$$|\mathcal{M}_{F+1}(\ldots, i, j, k, \ldots)|^2 \propto \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots, i, k, \ldots)|^2$$

+ scaling violation: $g_s^2 \rightarrow 4\pi\alpha_s(Q^2)$

Coherence \rightarrow Parton j really emitted by (i,k) “colour antenna”

Can apply this many times \rightarrow nested factorizations
Factorization → Split the problem into many (nested) pieces

+ Quantum mechanics → Probabilities → Random Numbers

\[
P_{\text{event}} = P_{\text{hard}} \otimes P_{\text{dec}} \otimes P_{\text{ISR}} \otimes P_{\text{FSR}} \otimes P_{\text{MPI}} \otimes P_{\text{Had}} \otimes \ldots
\]

Hard Process & Decays:

Use (N)LO matrix elements

→ Sets “hard” resolution scale for process: \(Q_{\text{MAX}}\)

ISR & FSR (Initial & Final-State Radiation):

Altarelli-Parisi equations → differential evolution, \(dP/dQ^2\), as function of resolution scale; run from \(Q_{\text{MAX}}\) to ~ 1 GeV (More later)

MPI (Multi-Parton Interactions)

Additional (soft) parton-parton interactions: LO matrix elements

→ Additional (soft) “Underlying-Event” activity (Not the topic for today)

Hadronization

Non-perturbative model of color-singlet parton systems → hadrons
Unitarity (KLN):
Singular structure at loop level must be equal and opposite to tree level

\rightarrow Virtual (loop) correction:

$$2\text{Re}[M_F^{(0)} M_F^{(1)*}] = -g_s^2 N_C |M_F^{(0)}|^2 \int \frac{ds_{ij} ds_{jk}}{16\pi^2 s_{ij} s_{jk}} \left(\frac{2s_{ik}}{s_{ij}s_{jk}} + \text{less singular terms} \right)$$

Loop = $- \text{Int(Tree)} + F$

Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation
Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level

\[\rightarrow \text{Virtual (loop) correction:} \]

\[
2\text{Re}[\mathcal{M}_F^{(0)} \mathcal{M}_F^{(1)*}] = -g_s^2 N_C \left| \mathcal{M}_F^{(0)} \right|^2 \int \frac{d^4 s_{ij} d^4 s_{jk}}{16\pi^2 s_{ijk}} \left(\frac{2s_{ik}}{s_{ij}s_{jk}} + \text{less singular terms} \right)
\]

Realized by Event evolution in \(Q = \text{fractal scale} \) (virtuality, \(p_T \), formation time, ...)

- **Resolution scale**
 \(t = \ln(Q^2) \)

- **Probability to remain “unbranched” from \(t_0 \) to \(t \)**
 \[
 \frac{N_F(t)}{N_F(t_0)} = \Delta_F(t_0, t) = \exp \left(-\int \frac{d\sigma_{F+1}}{d\sigma_F} \right)
 \]

- **Approximation to Real Emissions**

- **Approximation to Loop Corrections**

Loop = - \(\text{Int(Tree)} + F \)

Neglect \(F \) → **Leading-Logarithmic (LL) Approximation**
Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow = fractal with scaling violation)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Unitarity

Cancellation of real & virtual singularities

Exponentiation

fluctuations within fluctuations
Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow = fractal with scaling violation)

Universality (scaling)
Jet-within-a-jet-within-a-jet-...

Unitarity

Cancellation of real & virtual singularities

Exponentiation
fluctuations within fluctuations

But ≠ full QCD! Only LL Approximation.
Jack of All Orders, Master of None?

“Good” Shower(s) \(\rightarrow \) Dominant all-orders structures

But what about all these unphysical choices?

Renormalization Scales (for each power of \(\alpha_s \))

The choice of shower evolution “time” \(\sim \) Factorization Scale(s)

The radiation/antenna/splitting functions (hard jets are non-singular)

Recoils (kinematics maps, \(d\Phi_{n+1}/d\Phi_n \))

The infrared cutoff contour (hadronization cutoff)

Nature does not depend on them \(\rightarrow \) vary to estimate uncertainties

Problem: existing approaches vary only one or two of these choices

1. Systematic Variations
 \(\rightarrow \) Comprehensive Theory
 Uncertainty Estimates

2. Higher-Order Corrections
 \(\rightarrow \) Systematic Reduction of Uncertainties
Including LO Matrix Elements

Conceptual Example of Current Approaches: MLM-like “Slicing”:
Use ME for $p_T > p_{T\text{match}}$; Use PS for $p_T < p_{T\text{match}}$

Born
- Compute inclusive σ_B
- Generate $d\sigma_B$ Phase Space
- Shower
- Reject if jet(s) > $p_{T\text{match}}$
 → retain Sudakov fraction
- → Exclusive $\sigma_B(p_{T\text{match}})$
- Unweight (incl PDFs, α_s)

Born + 1
- Compute incl $\sigma_{B+1}(p_{T\text{match}})$
- Generate $d\sigma_{B+1}$ Phase Space
- Shower
- Reject if jet(s) > $p_{T\text{match}}$
 → retain Sudakov fraction
- → Exclusive $\sigma_{B+1}(p_{T\text{match}})$
- Unweight (incl PDFs, α_s)

Born + 2
- Compute incl $\sigma_{B+2}(p_{T\text{match}})$
- Generate $d\sigma_{B+2}$ Phase Space
- Shower
- Reject if jet(s) > p_{T2}
 → retain Sudakov fraction
- → Inclusive σ_{B+2}
- Unweight (incl PDFs, α_s)

Fixed Order is starting point. Treats each multiplicity as a separate calculation. Inefficiencies can enter in PS generation, Rejection, and Unweighting Steps.
Ask:

Is it possible to interpret the all-orders structure that a shower generates as a trial distribution for a more precise evolution?

Would essentially amount to using a QCD shower as your (only) phase space generator, on top of which fixed-order amplitudes are imprinted as (unitary and finite) multiplicative corrections.
Changing Paradigm

Ask:

Is it possible to interpret the all-orders structure that a shower generates as a trial distribution for a more precise evolution?

Would essentially amount to using a QCD shower as your (only) phase space generator, on top of which fixed-order amplitudes are imprinted as (unitary and finite) multiplicative corrections.

Answer:

Used to be no.

First order worked out in the eighties (Sjöstrand, also used in POWHEG), but higher-order expansions rapidly became too complicated.
Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS : 2 on-shell \rightarrow 3 on-shell partons, with (E,p) cons)
Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS: 2 on-shell → 3 on-shell partons, with (E, p) cons)

Resolution Time
Infinite family of continuously deformable Q_E
Special cases: transverse momentum, dipole mass, energy

Radiation functions
Arbitrary non-singular coefficients, ant_i
+ Massive antenna functions for massive fermions (c, b, t)

Kinematics maps
Formalism derived for arbitrary 2→3 recoil maps, $K_{3→2}$
Default: massive generalization of Kosower’s antenna maps

vincia.hepforge.org
Idea:
Start from quasi-conformal all-orders structure (approximate)
Impose exact higher orders as finite multiplicative corrections
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events → can be hadronized

Problems:
Traditional parton showers are history-dependent (non-Markovian)
→ Number of generated terms grows like \(2^N N!\)
+ Dead zones and complicated expansions

Solution: (MC)² : Monte-Carlo Markov Chain
Markovian Antenna Showers (VINCI)
→ Number of generated terms grows like \(N\)
+ exact phase space & simple expansions

LO: Giele, Kosower, Skands, PRD 84 (2011) 054003
New: Markovian pQCD

Start at Born level

\[|M_F|^2 \]

\[\begin{array}{cccc}
+0 & +1 & +2 & +3 \\
\hline
+0 & \text{Empty} & \text{Empty} & \text{Empty} \\
+1 & \text{Empty} & \text{Empty} & \text{Empty} \\
+2 & \text{Empty} & \text{Empty} & \text{Empty} \\
+3 & \text{Empty} & \text{Empty} & \text{Empty} \\
\end{array} \]

The VINCIA Code + PYTHIA 8

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

\[pQCD : \text{perturbative QCD} \]
Start at Born level

$|M_F|^2$

Generate "shower" emission

$|M_{F+1}|^2 \sim \sum_{i \in \text{ant}} a_i |M_F|^2$

The VINCIA Code

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

PYTHIA 8
New: Markovian pQCD

Start at Born level
\[|M_F|^2 \]

Generate "shower" emission
\[|M_{F+1}|^2 \approx \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element
\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

"Higher-Order Corrections To Timelike Jets"
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

The VINCIA Code

PYTHIA 8
New: Markovian pQCD

Start at Born level
\[|M_F|^2 \]

Generate “shower” emission
\[|M_{F+1}|^2 \sim LL \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element
\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower
Virtual = - \int \text{Real}

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

PYTHIA 8
New: Markovian pQCD

Start at Born level
\[|M_F|^2 \]

Generate “shower” emission
\[|M_{F+1}|^2 \overset{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element
\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower
Virtual = \(- \int \text{Real} \)

Correct to Matrix Element
\[|M_F|^2 \rightarrow |M_F|^2 + 2 \text{Re}[M_F^1 M_F^0] + \int \text{Real} \]

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

The VINCIA Code
PYTHIA 8
Start at Born level

\[|M_F|^2 \]

Generate “shower” emission

\[|M_{F+1}|^2 \overset{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element

\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower

Virtual = \(- \int \text{Real}\)

Correct to Matrix Element

\[|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real} \]
Start at Born level

\[|M_F|^2 \]

Generate “shower” emission

\[|M_{F+1}|^2 \sim \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element

\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower

Virtual = \(- \int \text{Real} \)

Correct to Matrix Element

\[|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real} \]
New: Markovian pQCD

Start at Born level

\[|M_F|^2 \]

Generate "shower" emission

\[|M_{F+1}|^2 \sim \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element

\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower

Virtual = \(- \int \text{Real}\)

Correct to Matrix Element

\[|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real} \]

"Higher-Order Corrections To Timelike Jets"
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
New: Markovian pQCD

Start at Born level
\[|M_F|^2 \]

Generate “shower” emission
\[|M_{F+1}|^2 \overset{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element
\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower
Virtual = \(-\int\) Real

Correct to Matrix Element
\[|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int\text{Real} \]

“Higher-Order Corrections To Timelike Jets”

GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level

\[|M_F|^2 \]

Generate "shower" emission

\[|M_{F+1}|^2 \overset{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element

\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower

Virtual = \(- \int\) Real

Correct to Matrix Element

\[|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int\text{Real} \]

Cutting Edge:
Embedding virtual amplitudes
= Next Perturbative Order
→ Precision Monte Carlos

"Higher-Order Corrections To Timelike Jets"
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
New: Markovian pQCD

Start at Born level

\[|M_F|^2 \]

Generate “shower” emission

\[|M_{F+1}|^2 \sim \sum_{i \in \text{ant}} a_i |M_F|^2 \]

Correct to Matrix Element

\[a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i \]

Unitarity of Shower

Virtual = \(- \int \text{Real} \)

Correct to Matrix Element

\[|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real} \]

Cutting Edge:
Embedding virtual amplitudes
= Next Perturbative Order
→ Precision Monte Carlos

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
Helicities

Larkoski, Peskin, PRD 81 (2010) 054010
Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Traditional parton showers use the standard Altarelli-Parisi kernels, \(P(z) = \text{helicity sums/averages over:} \)

\[
\begin{array}{c|cccc}
P(z) & ++ & -+ & +- & -- \\
g_+ \rightarrow gg & \frac{1}{z}(1-z) & \frac{(1-z)^3}{z} & \frac{z^3}{(1-z)} & 0 \\
g_+ \rightarrow q\bar{q} & - & \frac{(1-z)^2}{z} & z^2 & - \\
q_+ \rightarrow gg & \frac{1}{1-z} & - & \frac{z^2}{1-z} & - \\
q_+ \rightarrow g\bar{g} & \frac{1}{z} & \frac{(1-z)^2}{z} & - & - \\
\end{array}
\]

Generalize these objects to dipole-antennae

E.g.,

\(q\bar{q} \rightarrow qg\bar{q} \)

\[
\begin{align*}
++ & \rightarrow +++ & \text{MHV} \\
++ & \rightarrow +-- & \text{NMHV} \\
+- & \rightarrow +-- & \text{P-wave} \\
+- & \rightarrow +-- & \text{P-wave}
\end{align*}
\]

→ Can trace helicities through shower

→ Eliminates contribution from unphysical helicity configurations

→ Can match to individual helicity amplitudes rather than helicity sum

→ Fast! (gets rid of another factor \(2^N \))
Flat phase-space scan. $H^0 \rightarrow q\bar{q} + ng$. Size of helicity contributions.
Helicity Contributions

Flat phase-space scan. $H^0 \rightarrow qq + ng$. Size of helicity contributions.

Distribution of PS/ME ratio (summed over helicities)

Vincia shower already quite close to ME → small corrections

Note: precision not greatly improved by helicity dependence
Helicity Contributions

Flat phase-space scan. $H^0 \to q\bar{q} + ng$. Size of helicity contributions.

Distribution of PS/ME ratio (summed over helicities)

Vincia shower already quite close to ME → small corrections

Note: precision not greatly improved by helicity dependence
Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Speed

1. Initialization time
(to pre-compute cross sections and warm up phase-space grids)

10000

1000

100

10

1

0.1

2

3

4

5

6

SHERPA+COMIX

PYTHIA+VINCIA

2. Time to generate 1000 events
(Z → partons, fully showered & matched. No hadronization.)

1000

100

10

1

0.1

2

3

4

5

6

SHERPA (CKKW-L)

VINCIA (GKS)

unpolarized

polarized

Hadronization

Time (LEP)

Z → n : Number of Matched Legs

Z → uds cb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Q_{match} = 5 GeV

SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 + MADGRAPH 4.4.26 ;

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)
Pedagogical Example: $Z^0 \rightarrow q\bar{q}$ First Order (\simPOWHEG)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{\text{had}}$

\[
\begin{align*}
&= |M_0^0|^2 \left(1 + \frac{2 \text{Re}[M_0^0 M_1^1^*]}{|M_0^0|^2} + \int_0^{Q_{\text{had}}^2} d\Phi_{\text{ant}} g_s^2 C A_{g/q\bar{q}} \right) \\
&= \frac{|M_1^0|^2}{|M_0^0|^2}
\end{align*}
\]
Pedagogical Example: $Z^0 \to q\bar{q}$ First Order (~POWHEG)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{\text{had}}$

$$|M_0^0|^2 \left(1 + \frac{2 \text{Re}[M_0^0 M_0^1^*]}{|M_0^0|^2} + \int_0^{Q_{\text{had}}^2} d\Phi_{\text{ant}} g_s^2 C A_{g/q\bar{q}} \right)$$

- Born
- Virtual
- Unresolved Real

$$= \frac{|M_1^0|^2}{|M_0^0|^2}$$

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{\text{had}}$

$$|M_0^0|^2 \Delta(s, Q_{\text{had}}^2) = |M_0^0|^2 \left(1 - \int_0^s d\Phi_{\text{ant}} g_s^2 C A_{g/q\bar{q}} + O(\alpha_s^2) \right)$$

- Born
- Sudakov
- Approximate Virtual + Unresolved Real
Pedagogical Example: $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{\text{had}}$

\[
|M_0^0|^2 \left(1 + \frac{2 \text{Re}[M_0^0 M_0^{1*}]}{|M_0^0|^2} + \int_0^{Q_{\text{had}}^2} d\Phi_{\text{ant}} g_s^2 C A_{g/q\bar{q}} \right) = \frac{|M_1^0|^2}{|M_0^0|^2}
\]

- Born
- Virtual
- Unresolved Real

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{\text{had}}$

\[
|M_0^0|^2 \Delta(s, Q_{\text{had}}^2) = |M_0^0|^2 \left(1 - \int_{Q_{\text{had}}^2}^{s} d\Phi_{\text{ant}} g_s^2 C A_{g/q\bar{q}} + O(\alpha_s^2) \right)
\]

- Born
- Sudakov
- Approximate Virtual + Unresolved Real

NLO Correction: Subtract and correct by difference

\[
\begin{align*}
\frac{2 \text{Re}[M_0^0 M_0^{1*}]}{|M_0^0|^2} &= \frac{\alpha_s}{2\pi} 2C_F \left(2I_{q\bar{q}}(\mu^2/m_Z^2) - 4 \right) \\
\int_0^s d\Phi_{\text{ant}} 2C_F g_s^2 A_{g/q\bar{q}} &= \frac{\alpha_s}{2\pi} 2C_F \left(-2I_{q\bar{q}}(\mu^2/m_Z^2) + \frac{19}{4} \right) \\
\end{align*}
\]

IR Singularity Operator
Getting Serious: second order

Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at $Q = Q_{\text{had}}$

$$\text{Exact} \quad \rightarrow \quad |M_1^0|^2 + 2 \text{Re}[M_1^0 M_1^{1*}] + \int_0^{Q_{\text{had}}^2} \frac{d\Phi_2}{d\Phi_1} |M_2^0|^2$$

Vincia:

2→3 Evolution Step

3→4 Evolution Step

Approximate $\rightarrow (1 + V_0) |M_1^0|^2 \Delta_2(m_Z^2, Q_1^2) \Delta_3(Q_{R1}^2, Q_{\text{had}}^2)$,

$V_0 = \frac{\alpha_s}{\pi}$

μ_R
Loop Corrections

NLO Correction: Subtract and correct by difference

\[V_{1Z}(q, g, \bar{q}) = \frac{2 \text{Re}[M_1^0 M_1^{1*}]}{|M_1^0|^2} \]^{\text{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) \ln \left(\frac{\mu_{\text{ME}}^2}{\mu_{\text{PS}}^2} \right)

+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qq}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) + \frac{34}{3} \right]

+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg, F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{gq, F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]

+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} A_{g/q\bar{q}}^{\text{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} \delta A_{g/q\bar{q}} \right]

- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Ej}) A_{g/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{g/qg}

+ \frac{\alpha_s n_F}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Sj}) P_{A_j} A_{\bar{q}/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{\bar{q}/qg} \right]

- \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \]
NLO Correction: Subtract and correct by difference

\[V_{1Z}(q, g, \bar{q}) = \left[\frac{2 \Re[M_1^0 M_1^*]}{|M_1^0|^2} \right]^{\text{LC}} - \frac{\alpha_s}{\pi} V_0 - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) \ln \left(\frac{\mu_{\text{ME}}^2}{\mu_{\text{PS}}^2} \right) \]

\[+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qq}^{(1)}(\epsilon, \mu^2/s_{qq}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) + \frac{34}{3} \right] \]

\[+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qq}) - 2I_{gq,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right] \]

\[+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} A_{g/q\bar{q}}^{\text{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} \delta A_{g/q\bar{q}} \right] \]

\[- \sum_{j=1}^{2} 8\pi^2 \int_0^{s_j} d\Phi_{\text{ant}} (1 - O_{Ej}) A_{g/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_0^{s_j} d\Phi_{\text{ant}} \delta A_{g/qg} \]

\[+ \frac{\alpha_s n_F}{2\pi} \left[- \sum_{j=1}^{2} 8\pi^2 \int_0^{s_j} d\Phi_{\text{ant}} (1 - O_{Sj}) P_{Aj} A_{\bar{q}g/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_0^{s_j} d\Phi_{\text{ant}} \delta A_{\bar{q}g/qg} \right] \]

\[- \frac{1}{6} \frac{s_{qq} - s_{g\bar{q}}}{s_{qq} + s_{g\bar{q}}} \ln \left(\frac{s_{qq}}{s_{g\bar{q}}} \right) \]

\[\text{Q}_1 = 3\text{-parton Resolution Scale} \]

\[\text{O}_{Ej} = \text{Gluon-Emission Ordering Function} \]

\[\text{O}_{Sj} = \text{Gluon-Splitting Ordering Function} \]

The “Ariadne” Log

(72)

Hartgring, Laenen, Skands, arXiv:1303.4974
NLO Correction: Subtract and correct by difference

\[
V_{1Z}(q, g, \bar{q}) = \left[\frac{2 \text{Re}[M_1^0 M_1^{*}]}{|M_1^0|^2} \right]^{\text{LC}} - \frac{\alpha_s}{\pi} V_0 - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) \ln \left(\frac{\mu_{\text{ME}}^2}{\mu_{\text{PS}}^2} \right) \\
+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{\bar{q}g}) + \frac{34}{3} \right] \\
+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right] \\
+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} \text{d}\Phi_{\text{ant}} \ A_{g/q\bar{q}}^\text{std} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} \text{d}\Phi_{\text{ant}} \ \delta A_{g/q\bar{q}} \right. \\
- \left. \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} \ (1 - O_{E_j}) A_{g/qg}^\text{std} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} \ \delta A_{g/qg} \right] \\
+ \frac{\alpha_s n_F}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} \ (1 - O_{S_j}) P_{A_j} A_{qg}^\text{std} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} \ \delta A_{\bar{q}/qg} \right. \\
- \left. \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \right].
\]
NLO Correction: Subtract and correct by difference

\[V_{1Z}(q, g, \bar{q}) = \left[\frac{2 \text{Re}[M_1^0 M_1^*]}{|M_1^1|^2} \right]^{\text{LC}} - \frac{\alpha_s}{2\pi} V_0 - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) \ln\left(\frac{\mu_R^2}{\mu_{\text{ME}}^2} \right) \]

\[+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{gq,1}^{(1)}(\epsilon, \mu^2/s_{gq}) - 2I_{qg,1}^{(1)}(\epsilon, \mu^2/s_{gq}) + \frac{34}{3} \right] \]

\[+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{gq,F,1}^{(1)}(\epsilon, \mu^2/s_{gq}) - 2I_{qg,F,1}^{(1)}(\epsilon, \mu^2/s_{gq}) - 1 \right] \]

\[+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_2^2} \text{d}\Phi_{\text{ant}} A_{g/\bar{q}}^{\text{std}} + 8\pi^2 \int_{Q_1^2}^{m_2^2} \text{d}\Phi_{\text{ant}} \delta A_{g/\bar{q}} \right]
\]

\[- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} (1 - O_{E,j}) A_{g/\bar{q}}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} \delta A_{g/\bar{q}} \]

\[+ \frac{\alpha_s n_F}{2\pi} \left[- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} (1 - O_{S,j}) P_{A_j} A_{\bar{q}/g}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \text{d}\Phi_{\text{ant}} \delta A_{\bar{q}/g} \right] \]

\[- \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \]

\[(72) \]
NLO Correction: Subtract and correct by difference

\[V_{1Z}(q, g, q) = \left[\frac{2 \text{Re}[M_1^0 M_1^{0*}]}{|M_1^0|^2} \right]^{\text{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) \ln \left(\frac{\mu^2_{\text{ME}}}{\mu^2_{\text{PS}}} \right) \]

Gluon Emission IR Singularity (std antenna integral)

\[+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{gq}) + \frac{34}{3} \right] \]

Gluon Splitting IR Singularity (std antenna integral)

\[+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{gq,F}^{(1)}(\epsilon, \mu^2/s_{gq}) - 1 \right] \]

Standard (universal) 2→3 Sudakov Logs

\[+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} A_{g/qg}^{\text{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} \delta A_{g/qg} \right] \]

\[- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Ej}) A_{g/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{g/qg} \]

\[+ \frac{\alpha_s n_F}{2\pi} \left[- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Sj}) P_{Aj} A_{qg/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{qg/qg} \right] \]

\[- \frac{1}{6} \frac{s_{qg} - s_{gq}}{s_{qg} + s_{gq}} \ln \left(\frac{s_{qg}}{s_{gq}} \right) \]

\[\text{The “Ariadne Log”} \]
NLO Correction: Subtract and correct by difference

\[
V_{1Z}(q, g, \bar{q}) = \left[\frac{2 \text{Re}[M_1^0 M_1^*]}{|M_1^1|^2} \right]^{\text{LC}} - \frac{\alpha_s}{\pi} V_0 - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) \ln \left(\frac{\mu_{\text{ME}}^2}{\mu_{\text{PS}}^2} \right) + \frac{\alpha_s C_A}{2\pi} \left[-2I_{qq}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qq}^{(1)}(\epsilon, \mu^2/s_{q\bar{q}}) + \frac{34}{3} \right] \\
+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{q\bar{q}}) - 1 \right] \\
+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} A_{g/q\bar{q}}^{\text{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} \delta A_{g/q\bar{q}} \right] \\
- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Ej}) A_{g/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{g/qg} \\
+ \frac{\alpha_s n_F}{2\pi} \left[-2 \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Sj}) P_{Aj} A_{q\bar{q}g}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{q\bar{q}g} \right] \\
- \frac{1}{6} \frac{s_{qg} - s_{q\bar{q}}}{s_{qg} + s_{q\bar{q}}} \ln \left(\frac{s_{qg}}{s_{q\bar{q}}} \right),
\]

\(Q_1 = 3 \)-parton Resolution Scale

\(O_{Ej} = \text{Gluon-Emission Ordering Function} \)

\(O_{Sj} = \text{Gluon-Splitting Ordering Function} \)

The “Ariadne” Log

(72)
NLO Correction: Subtract and correct by difference

\[
V_{1Z}(q, g, \bar{q}) = \left[\frac{2 \text{Re}[M_1^0 M_1^{1*}]}{|M_1|^2} \right]^{\text{LC}} - \frac{\alpha_s V_0}{2\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6} \right) + \frac{\mu_R}{\mu_{\text{ME}}} \ln \left(\frac{\mu_{\text{ME}}^2}{\mu_{\text{PS}}^2} \right)
\]

\[
+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qq}^{(1)}(\epsilon, \mu^2/s_{qq}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) + \frac{34}{3} \right]
\]

\[
+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{gq,F}^{(1)}(\epsilon, \mu^2/s_{gq}) - 2I_{gq,F}^{(1)}(\epsilon, \mu^2/s_{gq}) - 1 \right]
\]

\[
+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} A_{g/q\bar{q}}^{\text{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} d\Phi_{\text{ant}} \delta A_{g/q\bar{q}} \right]
\]

\[
- \sum_{j=1}^{2} \left[8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Ej}) A_{g/q\bar{q}}^{\text{std}} + 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{g/q\bar{q}} \right]
\]

\[
+ \frac{\alpha_s n_F}{2\pi} \left[- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Sj} P_{Aj}) A_{\bar{q}/g\bar{q}}^{\text{std}} + 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{\bar{q}/g\bar{q}} \right]
\]

\[
- \frac{1}{6} \frac{s_{qg} - s_{gq}}{s_{qg} + s_{gq}} \ln \left(\frac{s_{qg}}{s_{gq}} \right)
\]

Gluon Emission IR Singularity (std antenna integral)

Gluon Splitting IR Singularity (std antenna integral)

Standard (universal) 2→3 Sudakov Logs

Standard (universal) 3→4 Sudakov Logs: C_A

Standard (universal) 3→4 Sudakov Logs: n_F

appendix of our paper + functions in the code
\[V_{1Z}(q, g, \bar{q}) = \left[\frac{2 \operatorname{Re}[M_1^0 M_1^{1*}]}{|M_1^1|^2} \right]_{\text{LC}}^{\text{ME}} - \frac{\alpha_s V_0}{\pi} \left[\frac{11 N_C - 2 n_F}{6} \right] \ln \left(\frac{\mu_{\text{MF}}^2}{\mu_{\text{PS}}^2} \right) \]

\[+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{\bar{q}\bar{q}}) + \frac{34}{3} \right] \]

\[+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right] \]

- \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} (1 - O_{Sj}) A_{g/qg}^{\text{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} d\Phi_{\text{ant}} \delta A_{g/qg}^{\text{ME}/\text{PS}}

\[\delta A_{g/qg}^{\text{ME}/\text{PS}} = \text{Integrals over ME/PS corrections} \]

\[\text{Done numerically} \]

\[Q_1 = 3\text{-parton Resolution Scale} \]

\[O_{Ej} = \text{Gluon-Emission Ordering Function} \]

\[O_{Sj} = \text{Gluon-Splitting Ordering Function} \]

\[\frac{1}{6} \frac{s_{qg} - s_{\bar{q}\bar{q}}}{s_{qg} + s_{\bar{q}\bar{q}}} \ln \left(\frac{s_{qg}}{s_{\bar{q}\bar{q}}} \right) \]

The “Ariadne Log”
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
liners of invariants, for mass-ordering (\text{Figure 2}:
\begin{align*}
Q_E^2 &= 4p_{\perp}^2 = \frac{4s_{ij}s_{jk}}{s_{ijk}}.
\end{align*}
Note that, for the special case of the
\text{2→3:}
\begin{align*}
a_3^0 &= \frac{1}{s} \left(\frac{2y_{ik}}{y_{ij}y_{jk}} + \frac{y_{ij}}{y_{jk}} + \frac{y_{jk}}{y_{ij}} \right) \\
&= \frac{\alpha_s C_A}{2\pi} \left(\sum_{i=1}^{5} K_i I_i(s, Q_3^2) \right) \\
K_1 &= 1, \quad K_2 = -2, \quad K_3 = 2, \quad K_4 = -\delta_{Ig} - \delta_{Kg}, \quad K_5 = 1.
\end{align*}
\begin{align*}
I_1 &= -\text{Li}_2 \left(\frac{1}{2} \left(1 + \sqrt{1 - y_3^2} \right) \right) + \text{Li}_2 \left(\frac{1}{2} \left(1 - \sqrt{1 - y_3^2} \right) \right) - \frac{1}{2} \ln \left(\frac{4}{y_3^2} \right) \ln \left(\frac{1 - \sqrt{1 - y_3^2}}{1 + \sqrt{1 - y_3^2}} \right) \\
I_2 &= -2\sqrt{1 - y_3^2} + \ln \left(\frac{1 + \sqrt{1 - y_3^2}}{1 - \sqrt{1 - y_3^2}} \right) \\
I_3 &= -\frac{1}{4} \sqrt{1 - y_3^2} + \frac{1}{4} \ln \left(\frac{1 + \sqrt{1 - y_3^2}}{1 - \sqrt{1 - y_3^2}} \right) \\
I_4 &= \left[-\frac{13\sqrt{1 - y_3^2}}{36} + \frac{1}{36} y_3^2 \sqrt{1 - y_3^2} + \frac{3}{3} \ln \left(1 + \sqrt{1 - y_3^2} \right) - \ln \left(y_3^2 \right) - \frac{3}{6} \right] \\
I_5 &= \frac{1}{24} \left[2 \left(3C_{00} - (C_{01} + C_{10})(-1 + y_3^2) \sqrt{1 - y_3^2} - 3C_{00} y_3 \ln \left(\frac{1 + \sqrt{1 - y_3^2}}{1 - \sqrt{1 - y_3^2}} \right) \right) \right].
\end{align*}
\text{3→4: } C_A \text{ piece (for strong ordering)}
\begin{align*}
-g_s^2 \sum_{j=1}^{2} C_A \int_{0}^{s_j} (1 - O_{E_j}) \, d\Phi_{\text{ant}} &= -\frac{\alpha_s C_A}{2\pi} \left(\sum_{i=1}^{5} K_i I_i(s_{qg}, Q_3^2) \right) - \frac{\alpha_s C_A}{2\pi} \left(\sum_{i=1}^{5} K_i I_i(s_{qg}, Q_3^2) \right)
\end{align*}
The δA Terms - Speed

Figure 14: Distribution of the size of the δA terms (normalized so the LO result is unity) in actual VINCIA runs. Left: linear scale, default settings. Right: logarithmic scale, with variations on the minimum number of MC points used for the integrations (default is 100).

<table>
<thead>
<tr>
<th>LO level</th>
<th>NLO level</th>
<th>Time / Event [milliseconds]</th>
<th>Speed relative to PYTHIA $1_{\text{Time}} / \text{PYTHIA 8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow Z$</td>
<td>2, 3</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>VINCIA (NLO off)</td>
<td>2, 3, 4, 5</td>
<td>2.2</td>
<td>$\sim 1/5$</td>
</tr>
<tr>
<td>VINCIA (NLO on)</td>
<td>2, 3, 4, 5</td>
<td>3.0</td>
<td>$\sim 1/7$</td>
</tr>
</tbody>
</table>

Speed:

- **Default Settings**
- **nMC = 100**
- **nMC = 400**
- **nMC = 1600**

Hartgring, Laenen, Skands, arXiv:1303.4974
1) IR Limits

Pole-subtracted one-loop matrix element

\[
S_{\text{Virtual}} = \left[\frac{2 \text{Re}[M_3^{0} M_3^{1*}]}{|M_3^{0}|^2} \right]_{\text{LC}} + \frac{\alpha_s C_A}{2\pi} \left[-2I_{qq}^{(1)}(\epsilon, \mu^2/s_{qq}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) + \frac{34}{3} \right] + \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{gq,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]
\]

\[
S_{\text{Virtual}} \begin{array}{l|l}
\text{soft} & \left(-L^2 - \frac{10}{3} L - \frac{\pi^2}{6} \right) C_A + \frac{1}{3} n_F L \\
\text{hard collinear} & -\frac{5}{3} L C_A + \frac{1}{6} n_F L
\end{array}
\]

\[s_{qq} = s_{g\bar{q}} = y \to 0\]

\[s_{qq} = y \to 0, s_{g\bar{q}} \to s\]

Second-Order Antenna Shower Expansion:

<table>
<thead>
<tr>
<th>p_\perp</th>
<th>strong</th>
<th>smooth</th>
<th>V_{3Z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft</td>
<td>(\left(L^2 - \frac{1}{3} L + \frac{\pi^2}{6} \right) C_A + \frac{1}{3} n_F L)</td>
<td>(\left(L^2 - \frac{1}{3} L - \frac{\pi^2}{6} \right) C_A + \frac{1}{3} n_F L)</td>
<td>$-\beta_0 L$</td>
</tr>
<tr>
<td>hard collinear</td>
<td>$-\frac{1}{6} L C_A + \frac{1}{6} n_F L$</td>
<td>(-\frac{1}{6} L - \frac{\pi^2}{6}) C_A + \frac{1}{6} n_F L</td>
<td>$-\frac{1}{2} \beta_0 L$</td>
</tr>
<tr>
<td>m_D</td>
<td>soft</td>
<td>(\left(L^2 + \frac{3}{2} L - \frac{\pi^2}{6} \right) C_A)</td>
<td>(\left(L^2 + \frac{3}{2} L - \frac{\pi^2}{6} \right) C_A)</td>
</tr>
<tr>
<td>hard collinear</td>
<td>$-\frac{1}{6} L C_A + \frac{1}{6} n_F L$</td>
<td>(-\frac{1}{6} L - \frac{\pi^2}{3}) C_A + \frac{1}{6} n_F L</td>
<td>$-\frac{1}{2} \beta_0 L$</td>
</tr>
</tbody>
</table>
2) NLO Evolution

Vincia: NLO $Z \to 2 \to 3$ Jets + Markov Shower

Size of NLO Correction:
over 3-parton Phase Space

Markov Evolution in:
Transverse Momentum

Parameters:

\[
\alpha_s(M_Z) = 0.12
\]
\[
\mu_R = m_Z
\]
\[
\Lambda_{QCD} = \Lambda_{MS}
\]

Scaled Invariants

\[
y_{ij} = \frac{2(p_i \cdot p_j)}{M_Z^2}
\]
→ 0 when $i \parallel j$
& when $E_j \to 0$

Hartgring, Laenen, Skands, arXiv:1303.4974
Renormalization: 1) Choose $\mu_R \sim p_{Tjet}$ (absorbs universal β-dependent terms)
2) Translate from MSbar to CMW scheme ($\Lambda_{CMW} \sim 1.6 \Lambda_{MSbar}$ for coherent showers)

Markov Evolution in: Transverse Momentum, $\alpha_S(M_Z) = 0.12$
The choice of evolution variable (Q)

Parameters: $\alpha_s(M_Z) = 0.12$, $\mu_R = p_{Tg}$

Figure 6: NLO correction factor for strong

Figure 2:

Evolution in Dipole Mass

Evolution in p_T

- Missing Sudakov Suppression in Soft Region
- Too much Sudakov Suppression in Collinear Region
- Small Corrections Everywhere
The proof of the pudding

LO Tunes
(both VINCIA and PYTHIA)

$$\alpha_s(M_Z)^{\text{MSbar}} \sim 0.139$$

(LO matrix elements give similar values, and also LO PDFs)

New VINCIA NLO Tune

$$\alpha_s(M_Z)^{\text{CMW}} = 0.122$$

with 2-loop running (new)

<table>
<thead>
<tr>
<th>$\langle \chi^2 \rangle$ Shapes</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>B_W</th>
<th>B_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA 8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>VINCIA (LO)</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>VINCIA (NLO)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\langle \chi^2 \rangle$ Frag</th>
<th>N_{ch}</th>
<th>x</th>
<th>Mesons</th>
<th>Baryons</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA 8</td>
<td>0.8</td>
<td>0.4</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>VINCIA (LO)</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>VINCIA (NLO)</td>
<td>0.1</td>
<td>0.7</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Data from Phys.Rept. 399 (2004) 71

Hartgring, Laenen, Skands, arXiv:1303.4974
Beyond Perturbation Theory

Better pQCD → Better non-perturbative constraints

Soft QCD & Hadronization:
Less perturbative ambiguity → improved clarity

ALICE/RHIC:
pp as reference for AA
Collective (soft) effects in pp

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:29:42
Fill : 1482
Run : 137124
Event : 0x00000000271EC693

central slice
(0.5% of tracks in the event)
Beyond Colliders?

Other uses for a high-precision fragmentation model

Dark-matter annihilation:
Photon & particle spectra

Cosmic Rays:
Extrapolations to ultra-high energies

ISS, March 28, 2012
Aurora and sunrise over Ireland & the UK
Thank You

Outlook

p → p

Thank You
+ 2nd order showers
NLO ee → 4 jets
NLO w helicity dependence
NLO w massive fermions
NLO automated
Interleaved showers & dec.
Niels Erik
3 Months Today
Fixed Order: Recap

Improve by computing quantum corrections, order by order

Leading Order

<table>
<thead>
<tr>
<th>k (legs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\sigma_0^{(0)}$</td>
<td>$\sigma_1^{(0)}$</td>
<td>$\sigma_2^{(0)}$</td>
<td>$\sigma_3^{(0)}$</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>$\sigma_0^{(1)}$</td>
<td>$\sigma_1^{(1)}$</td>
<td>$\sigma_2^{(1)}$</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>$\sigma_0^{(2)}$</td>
<td>$\sigma_1^{(2)}$</td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Max Born, 1882-1970
Nobel 1954

Next-to-Leading Order

<table>
<thead>
<tr>
<th>k (legs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\sigma_0^{(0)}$</td>
<td>$\sigma_1^{(0)}$</td>
<td>$\sigma_2^{(0)}$</td>
<td>$\sigma_3^{(0)}$</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>$\sigma_0^{(1)}$</td>
<td>$\sigma_1^{(1)}$</td>
<td>$\sigma_2^{(1)}$</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>$\sigma_0^{(2)}$</td>
<td>$\sigma_1^{(2)}$</td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Fixed Order: Recap

Improve by computing quantum corrections, order by order

(From PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Leading Order

\[
\sigma^{\text{NLO}} = \sigma^{\text{Born}} + \int d\Phi_{F+1} \left| M_{F+1}^{(0)} \right|^2 + \int d\Phi_F 2\text{Re} \left[M_F^{(1)} M_F^{(0)\ast} \right]
\]

\[
\rightarrow 1/\epsilon^2 + 1/\epsilon + \text{Finite}
\]

Next-to-Leading Order

Max Born, 1882-1970
Nobel 1954

\[
\sigma^{\text{NLO}} = \sigma^{\text{Born}} + \int d\Phi_{F+1} \left| M_{F+1}^{(0)} \right|^2 + \int d\Phi_F 2\text{Re} \left[M_F^{(1)} M_F^{(0)\ast} \right]
\]

\[
\rightarrow -1/\epsilon^2 - 1/\epsilon + \text{Finite}
\]
Fixed Order: Recap

Improve by computing quantum corrections, order by order

Leading Order

\[
\sigma^{\text{NLO}} = \sigma^{\text{Born}} + \int d\Phi_{F+1} \left| M^{(0)}_{F+1} \right|^2 + \int d\Phi_F \text{Re} \left[M^{(1)}_F M^{(0)*}_F \right]
\]

Next-to-Leading Order

\[
\sigma^{\text{NLO}} = \sigma^{\text{Born}} + \int d\Phi_{F+1} \left| M^{(0)}_{F+1} \right|^2 + \int d\Phi_F \text{Re} \left[M^{(1)}_F M^{(0)*}_F \right] + \int d\Phi_{F+1} d\sigma^{\text{NLO}}_S
\]

The Subtraction Idea

Universal "Subtraction Terms" (will return to later)

Finite by Universality

Finite by KLN
Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the IK pair, respectively, originate in different shower types. (Θ_I and Θ_K represent angular vetos with respect to partons I and K, respectively, and Θ_{IK} represents a sector phase-space veto, see text.)
Global Antennae

Table 2: Table of coefficients for helicity-dependent global antenna functions. By the C and P invariance of QCD, the same expressions apply with $+\bar{q}$, $q\bar{q}$. All other antennae are zero. The parameter α determines the form of the spin-summed global antennae. The default choice in VINCIA is $\alpha = 0$ which corresponds to the GGG spin-summed antennae. The finite terms are chosen so that the antennae are positive on all of final state phase space.

<table>
<thead>
<tr>
<th>\times</th>
<th>$\frac{1}{y_{ij}y_{jk}}$</th>
<th>$\frac{1}{y_{ij}}$</th>
<th>$\frac{1}{y_{jk}}$</th>
<th>$\frac{y_{jk}}{y_{ij}}$</th>
<th>$\frac{y_{ij}}{y_{jk}}$</th>
<th>$\frac{y_{jk}^2}{y_{ij}}$</th>
<th>$\frac{y_{ij}^2}{y_{jk}}$</th>
<th>1</th>
<th>y_{ij}</th>
<th>y_{jk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q\bar{q} \rightarrow qg\bar{q}$</td>
<td></td>
</tr>
<tr>
<td>$++ \rightarrow +++$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>-2</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$qq \rightarrow qgg$</td>
<td></td>
</tr>
<tr>
<td>$++ \rightarrow +++$</td>
<td>1</td>
<td>0</td>
<td>$-\alpha + 1$</td>
<td>0</td>
<td>$2\alpha - 2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>-2</td>
<td>$-\alpha + 1$</td>
<td>1</td>
<td>$2\alpha - 2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$gg \rightarrow ggg$</td>
<td></td>
</tr>
<tr>
<td>$++ \rightarrow +++$</td>
<td>1</td>
<td>$-\alpha + 1$</td>
<td>$-\alpha + 1$</td>
<td>$2\alpha - 2$</td>
<td>$2\alpha - 2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>$-\alpha + 1$</td>
<td>-3</td>
<td>$2\alpha - 2$</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>1</td>
<td>-3</td>
<td>$-\alpha + 1$</td>
<td>3</td>
<td>$2\alpha - 2$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$gg \rightarrow g\bar{q}q'$</td>
<td></td>
</tr>
<tr>
<td>$++ \rightarrow +++$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$gg \rightarrow gqq$</td>
<td></td>
</tr>
<tr>
<td>$++ \rightarrow +++$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$++ \rightarrow +--$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Sector Antennae

Global

\[
\bar{a}^{gl}_{g/qg}(p_i, p_j, p_k) \xrightarrow{s_{jk} \to 0} \frac{1}{s_{jk}} \left(P_{gg \to G}(z) - \frac{2z}{1 - z} - z(1 - z) \right)
\]

\(\rightarrow P(z) = \text{Sum over two neighboring antennae} \)

Sector

Only a single term in each phase space point

\[
\bar{a}_{j/IK}^{\text{sct}}(y_{ij}, y_{jk}) = \bar{a}_{j/IK}^{\text{gl}}(y_{ij}, y_{jk}) \quad + \quad \delta_{Ig} \delta_{HK} H_k \left\{ \delta_{H_j H_i} \delta_{H_1 H_j} \left(\frac{1 + y_{jk} + y_{jk}^2}{y_{ij}} \right) \right. \\
\left. + \quad \delta_{H_1 H_j} \left(\frac{1}{y_{ij}(1 - y_{jk})} - \frac{1 + y_{jk} + y_{jk}^2}{y_{ij}} \right) \right\} \\
+ \quad \delta_{Kg} \delta_{H_1 H_i} \left\{ \delta_{H_1 H_j} \delta_{HK H_k} \left(\frac{1 + y_{ij} + y_{ij}^2}{y_{jk}} \right) \right. \\
\left. + \quad \delta_{HK H_j} \left(\frac{1}{y_{jk}(1 - y_{ij})} - \frac{1 + y_{ij} + y_{ij}^2}{y_{jk}} \right) \right\}
\]

Sector = Global + additional collinear terms (from “neighboring” antenna)
In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains

Further evolution (restart scale) depends on which branching happened last → proliferation of terms

Number of histories contributing to \(n^{\text{th}} \) branching \(\propto 2^n n! \)

\[
\begin{array}{c}
\sim \\
+ \\
+ \\
+ \\
\end{array}
\]

\(j = 2 \)
\(\rightarrow 4 \text{ terms} \)

\[
\left(\begin{array}{c}
\sim \\
+ \\
\end{array} \right) \quad j = 1
\]
\(\rightarrow 2 \text{ terms} \)

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
Antenna showers: one term per parton pair

\[2^n n! \rightarrow n! \]

+ Change “shower restart” to Markov criterion:

Given an \(n \)-parton configuration, “ordering” scale is

\[Q_{ord} = \min(Q_{E1}, Q_{E2}, \ldots, Q_{En}) \]

Unique restart scale, independently of how it was produced

+ Matching: \(n! \rightarrow n \)

Given an \(n \)-parton configuration, its phase space weight is:

\[|M_n|^2 : \text{Unique weight, independently of how it was produced} \]

Matched Markovian Antenna Shower:
- After 2 branchings: 2 terms
- After 3 branchings: 3 terms
- After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
- After 2 branchings: 8 terms
- After 3 branchings: 48 terms
- After 4 branchings: 384 terms

(+ generic Lorentz-invariant and on-shell phase-space factorization)

Giele, Kosower, Skands, PRD 84 (2011) 054003

Lopez-Villarejo, Skands, JHEP 1111 (2011) 150
Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc

Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of $\log_{10}(PS/ME)$

- $Z \rightarrow 4$
 - Vincia 1.025 + MadGraph 4.426
 - Matched to $Z \rightarrow 3$
 - Strong Ordering

- $Z \rightarrow 5$
 - Vincia 1.025 + MadGraph 4.426
 - Matched to $Z \rightarrow 3$
 - Strong Ordering

- $Z \rightarrow 6$
 - Vincia 1.025 + MadGraph 4.426
 - Matched to $Z \rightarrow 3$
 - Strong Ordering

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there.*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
+ smooth ordering beyond matched multiplicities

\[
\frac{p_\perp^2}{\hat{p}_\perp^2 + p_\perp^2} \quad P_{LL} \quad \frac{p_\perp^2}{p_\perp^2} \quad \text{last branching}
\]
\[
\frac{p_\perp^2}{p_\perp^2} \quad \text{current branching}
\]
→ Better Approximations

Distribution of $\log_{10}(PS_{LO}/ME_{LO})$ (inverse ~ matching coefficient)

Z→ 4
- Vincia 1.025 + MadGraph 4.426
- Matched to Z→ 3
- Strong Ordering

Z→ 5
- Vincia 1.025 + MadGraph 4.426
- Matched to Z→ 3
- Strong Ordering

Z→ 6
- Vincia 1.025 + MadGraph 4.426
- Matched to Z→ 3
- Strong Ordering

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

Z→ 4
- Vincia 1.025 + MadGraph 4.426
- Matched to Z→ 3
- Smooth Ordering

Z→ 5
- Vincia 1.025 + MadGraph 4.426
- Matched to Z→ 3
- Smooth Ordering

Z→ 6
- Vincia 1.025 + MadGraph 4.426
- Matched to Z→ 3
- Smooth Ordering

No dead zone
+ Matching (+ full colour)

→ A very good all-orders starting point
IR Singularity Operators

\(q\bar{q} \to qg\bar{q} \) antenna function

\[
A^0_3(1_q, 3_g, 2_{\bar{q}}) = \frac{1}{s_{123}} \left(\frac{s_{13}}{s_{23}} + \frac{s_{23}}{s_{13}} + 2 \frac{s_{12}s_{13}}{s_{13}s_{23}} \right)
\]

Integrated antenna

\[
\mathcal{P}oles \left(A^0_3(s_{123}) \right) = -2I^{(1)}_{qq}(\epsilon, s_{123})
\]

\[
\mathcal{F}inite \left(A^0_3(s_{123}) \right) = \frac{19}{4}.
\]

\[
\chi^0_{ijk}(s_{ijk}) = (8\pi^2(4\pi)^{-\epsilon}e^{\epsilon\gamma}) \int d\Phi X_{ijk} X^0_{ijk}.
\]

Singularity Operators

\[
I^{(1)}_{qq}(\epsilon, \mu^2/s_{qq}) = -\frac{e^{\epsilon\gamma}}{2\Gamma(1-\epsilon)} \left[\frac{1}{\epsilon^2} + \frac{3}{2\epsilon} \right] \text{Re} \left(-\frac{\mu^2}{s_{qq}} \right)^\epsilon
\]

\[
I^{(1)}_{qq}(\epsilon, \mu^2/s_{qq}) = -\frac{e^{\epsilon\gamma}}{2\Gamma(1-\epsilon)} \left[\frac{1}{\epsilon^2} + \frac{5}{3\epsilon} \right] \text{Re} \left(-\frac{\mu^2}{s_{qq}} \right)^\epsilon
\]

\[
I^{(1)}_{qq,F}(\epsilon, \mu^2/s_{qq}) = \frac{e^{\epsilon\gamma}}{2\Gamma(1-\epsilon)} \frac{1}{6\epsilon} \text{Re} \left(-\frac{\mu^2}{s_{qq}} \right)^\epsilon
\]

for \(qg \to qg \)

for \(qg \to qq'q' \)
Uncertainties

No calculation is more precise than the reliability of its uncertainty estimate → aim for full assessment of TH uncertainties.
Another use for simple analytical expansions?

For each event, can compute probability this event would have resulted under alternative conditions.

+ **Unitarity**: also recompute no-evolution probabilities.

\[
P_2 = \frac{\alpha s_2 a_2}{\alpha s_1 a_1} P_1
\]

\[
P_{2;no} = 1 - P_2 = 1 - \frac{\alpha s_2 a_2}{\alpha s_1 a_1} P_1
\]
Traditional Approach:
Run calculation $1_{\text{central}} + 2N_{\text{variations}} = \text{slow}$

Another use for simple analytical expansions?

For each event, can compute probability this event would have resulted under alternative conditions

$$P_2 = \frac{\alpha_s^2 a_2}{\alpha_s^1 a_1} P_1$$

+ **Unitarity**: also recomputes no-evolution probabilities

$$P_{2;\text{no}} = 1 - P_2 = 1 - \frac{\alpha_s^2 a_2}{\alpha_s^1 a_1} P_1$$

VINCI A: = fast, automatic

Central weights = 1
+ N sets of alternative weights = variations (all with $<w>=1$)
→ For every configuration/event, calculation tells how sure it is
Bonus: events only have to be hadronized & detector-simulated ONCE!
Example of Physical Observable: **Before** (left) and **After** (right) Matching

Jet Broadening = LEP event-shape variable, measures “fatness” of jets
Example: Non-Singular Terms

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)
Example: μ_R

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)