Virtual Colliders for Citizen Scientists

Peter Skands
CERN Theoretical Physics Unit
Every day, around **10 000 scientists** from all over the world.

20 European Member States and around 60 other countries collaborate in our scientific projects.
1. **Accelerators**: powerful machines to accelerate particles up to extremely high energies and bringing them into collision with other particles.

2. **Detectors**: gigantic instruments recording the particles spraying out from the collisions.

3. **Computers**: collecting, stocking, distributing and analyzing the enormous amounts of data produced by the detectors.
Nutshell

Adjust this to agree with this

→ Science
In Practice

“Virtual Colliders” = Simulation Codes

Relativity, Quantum Theory, Physics Models, Algorithms, ...

→ Simulated Particle Collisions

Real Universe → Experiments & Data

Particle Accelerators, Detectors, and Measurements

→ Published Measurements

“Events” ↔ “Histograms”
CERN - The Large Hadron Collider (LHC)

The ATLAS Experiment at the LHC

ATLAS collision event at 7 TeV from March 2010

http://atlas.ch

LHC Collision at 7 TeV
ATLAS, March 2010
Task: determine “best” parameters for theory models
→ Compare against thousands of measurements, taken under different conditions, by different experiments, at different colliders
+ do this for many simulators & versions, with different setups

Quite technical
Quite tedious
→ Ask someone else everyone

LHC@home 2.0
TEST4THEORY

7000 Volunteers - 20000 Hosts
Over 700 billion simulated collision events
Idea: ship volunteers a virtual atom smasher
(to help do high-energy theory simulations)

- Runs when computer is idle. Sleeps when user is working.

Problem: Lots of different machines, architectures

- Use Virtualization (CernVM) → provides standardized computing environment on any machine (in our case: Scientific Linux)
- → replica of our normal working environment. Factorization of IT and Science Infrastructure;

Infrastructure: Sending Jobs and Retrieving output

- Based on BOINC platform for volunteer clouds (but can also use other distributed computing resources, like GRID or traditional farms)
- New aspect: virtualization, never previously done for a volunteer cloud

[Link](http://lhcathome2.cern.ch/test4theory/)
The LHC@home 2.0 project Test4Theory allows users to participate in running simulations of high-energy particle physics using their home computers.

The results are submitted to a database which is used as a common resource by both experimental and theoretical scientists working on the Large Hadron Collider at CERN.
Results → mcplots.cern.ch

Constraints on model parameters

(Total number of plots ~ 500,000)

- **Z (hadronic): 1-Thrust**
 - Generator Group: Main Herwig++ Pythia 6 Pythia 8 Sherpa Vincia Custom
 - 91 GeV ee

- **Ratio to ALEPH**
 - Thrust
 - Thrust Major
 - Thrust Minor
The “Jeppsson” Project

April 2010
The Jeppsson Project

April 2009: FB message from friend of friend: can a 15-yr old be a one-week intern at CERN?

We were developing a run-time display for our simulation anyway.

April 2010: simple text editor to edit input cards. Run-time display to compare output histograms to data.

Example: the effect of changing
Vincia:alphaSValue

<table>
<thead>
<tr>
<th>Theory/Data</th>
<th>Simulation 1</th>
<th>Simulation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Experimental Measurement Result (yellow = uncertainty)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Thrust": Measures how "spherical" events are

! * Strong-force Coupling
Vincia:alphaSValue = 0.138

! * Hadronic Energy Scale
Vincia:cutoffScale = 0.45

! * String parameters
StringZ:aLund = 0.38
StringZ:bLund = 0.62
StringPT:sigma = 0.26

! * Quark flavor parameters
StringFlav:probStoUD = 0.21
StringFlav:mesonUDvector = 0.35
StringFlav:mesonSvector = 0.55
StringFlav:probQQtoQ = 0.08
StringFlav:probSQtoQQ = 1.00
StringFlav:probQQ1toQQ0 = 0.03
StringFlav:decupletSup = 1.00
StringFlav:etaSup = 0.60
April 2009: FB message from friend of friend: can a 15-yr old be a one-week intern at CERN?

We were developing a run-time display for our simulation anyway.

April 2010: simple text editor to edit input cards. Run-time display to compare output histograms to data.

May 2010: Parameters released as new defaults.
Atom Smashers
The Citizen Cyberlab EU ICT Project - CERN's Contribution
Starting May 2013
The Citizen Cyberlab ICT Project

Standalone 3-yr Project funded by EU (2012-2015)

CERN Task: create citizen science pilot project in particle physics

The EU funds a 2-year “fellowship” starting in May: Ioannis Charalimpidis

We will

Develop an application that lets citizen scientists *learn about, interact with, and optimize high-energy physics simulations*, by *comparing them to real data*

→ feedback to scientists

How?

Combine the framework and lessons from Test4Theory / LHC@home 2.0 with those from the Jeppsson project → **Atom Smasher Application**

Provide content, explanations, visualizations (*modifiable and open*)

Organize one or more *citizen-science events* at CERN (e.g., for the CERN open day in September), host a *summer student* (e.g., a 4th year IT or Physics student) next year, ...
1. Immediately present user with interesting and interactive content.

Start simple:
- one physics parameter and one measurement.

Adjust parameter to agree with measurement.

Level 1

Task:
Use the controls (left) to make the simulation agree with the data (right).

Rollover tooltips + Click for more

More detailed explanations can be clicked into
→ Explanation → Elaboration → Engagement
2. Provide deeper levels of context, user extensions, and discussion (divided into levels: citizens, phys students, experts)

3. Users create their own annotations too (private / shared) + Combine with vote good/bad (incl our explanations) + Forums for further detailed discussion of issues
Progress

4. As user learns, unlock more distributions & parameters (with explanations) (Ultimately → LHC)

Task:
Use the controls (left) to make the simulation agree with the data (right)

Compare against current simulation defaults → feedback to scientists

Level 23
What’s the Goal(s)?

citizen science: beat the state of the art → feedback to scientists

Won’t happen every day, and not early.

Contributing something real to the scientists is main motivator.

learning: people will learn about particle physics. Can also be used for outreach, and even for physics teaching

Progress markers may be useful, even desirable. How well am I doing?

→ *Develop extra context layer (and targets) for university-level online course (for future)*

visualization: scientists also get a nice UI. It then needs to be close enough to the “real deal” that scientists can use it too.

Visual design (plots) must be professional and modifiable, usable in scientific publications.
Bonus: can point to same graphics in real science papers